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The accuracy of two grid adaptation strategies, grid redistribution and local grid
refinement, is examined by solving the 2-D Euler equations for the supersonic steady
flow around a cylinder. Second- and fourth-order linear finite difference shock-
capturing schemes, based on the Lax–Friedrichs flux splitting, are used to discretize
the governing equations. The grid refinement study shows that for the second-order
scheme, neither grid adaptation strategy improves the numerical solution accuracy
compared to that calculated on a uniform grid with the same number of grid points.
For the fourth-order scheme, the dominant first-order error component is reduced
by the grid adaptation, while the design-order error component drastically increases
because of the grid nonuniformity. As a result, both grid adaptation techniques im-
prove the numerical solution accuracy only on the coarsest mesh or on very fine
grids that are seldom found in practical applications because of the computational
cost involved. Similar error behavior has been obtained for the pressure integral
across the shock. A simple analysis shows that both grid adaptation strategies are not
without penalties in the numerical solution accuracy. Based on these results, a new
grid adaptation criterion for captured shocks is proposed. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Wave propagation phenomena in computational fluid dynamics, computational aeroa-
coustics, computational electromagnetics, and large eddy or direct numerical simulation of
turbulence are characterized by the presence of both a lot of structure in the smooth part of
the solution and strong discontinuities. For this class of problems, attaining the design ac-
curacy of high-order shock-capturing methods is problematic. As has recently been shown
for 1-D unsteady and 2-D steady shocked flows, the first-order error introduced by shock
capturing can persist globally downstream [1, 2]. The result is that the numerical solution is
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just first-order accurate downstream of the discontinuity, regardless of the design accuracy
of the discretization used. Similar degeneration in accuracy for captured discontinuities has
also been reported in [3].

One way of removing the first-order error component from the numerical solution is
shock fitting. As shown in [1, 2], if a cell interface is aligned with the shock, and a high-
order conservative essentially nonoscillatory (ENO) formulation based on a Roe flux which
satisfies the Rankine-Hugoniot shock jump relations is used to calculate the interface fluxes,
then the design order of accuracy can be recovered. Despite its simplicity, this method has
serious disadvantages. Detection and localization of multidimensional complex shocks,
generalization of this approach to moving and interacting shocks, and use of ENO type
approximations in singular regions where the smooth interpolants cannot be constructed
make this approach unreliable, and, therefore, little used in real numerical applications.

An alternative strategy is to reduce grid spacing locally near a shock rather than refine the
grid globally. The idea of this method is based on an assumption that the first-order error is
generated locally at the shock and then transported downstream. This approach, known as a
grid adaptation, has been extensively used to improve resolution of captured discontinuities
for at least 20 years; e.g., see [4]. There are two basic strategies of grid adaptation: local
grid refinement and grid redistribution. In the first approach, grid nodes are added to locally
enrich the grid to achieve higher accuracy. In the second approach, the number of grid
cells is fixed and the position of grid points is adjusted to improve the numerical solution
accuracy. Until now, little attention has been paid to one of the most important problems
associated with the adaptive grid methods: the essential effect of the grid points distribution
on error in the numerical solution. It should be emphasized that concentration of grid points
in regions which most influence the numerical solution accuracy may at the same time
introduce additional error because of the grid nonuniformity [5].

Most adaptive grid methods are based on the error equidistribution principle developed
in [6–8], which, in turn, is driven by one or another error estimation technique. One of the
widely used error estimators is gradient or local curvature of the numerical solution [9–11].
An alternative method is to equidistribute the local truncation error estimate or the finite
element residual which is similar to the finite difference truncation error [12, 13]. Another
class of error estimators is based on evaluating the solution interpolation error [14]. For
second-order discretizations, this method is reduced to estimation of the local curvature
of the numerical solution. Richardson extrapolation is also used to estimate error in the
numerical solution [15]. This procedure compares the solution obtained on the existing grid
with one computed on a grid that is twice as coarse in each spatial direction.

Although the error estimators mentioned above are quite different, all of them rely on
certain smoothness of the differential solution, which is not the case for discontinuous flows.
In fact, most grid adaptation criteria that can be found in the literature become singular at
discontinuities. To remove this singularity and to make the adaptive grid sufficiently smooth,
a grid smoothing procedure must be used. As a result, the grid adaptation near discontinuities
is driven by the grid smoothing procedure rather than the error estimate itself.

If grid cell interfaces are not aligned with a shock, the captured discontinuity is always
smeared over several grid points, which leads to the O(1) error near the shock. Since
the numerical solution is first-order accurate away from the shock, the true error and its
estimates achieve their maximum values at the discontinuity. As a result, any grid adaptation
procedure based on either the true error or its estimate leads to excessive clustering of grid
points or local grid refinement near the shock. This kind of a grid adaptation is intended
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to reduce the solution error in the vicinity of discontinuities, but it does not necessarily
guarantee improvement in accuracy in regions where the solution is smooth. As shown
in [16], the conventional adaptive mesh refinement procedure based on gradient or local
curvature of the numerical solution can lead to large error in the shock location caused by
insufficient accuracy in smooth regions of flow ahead of and behind the discontinuity.

In the present paper, the accuracy of the grid redistribution and local grid refinement
methods are studied. The 2-D test problem used is the supersonic flow around a circular
cylinder, for which a Chebyshev bow-shock fitting spectral method is employed to obtain
a very accurate numerical solution [17]. This solution is used as the “exact” solution in
all subsequent refinement studies. The Euler equations are approximated with second- and
fourth-order linear shock-capturing schemes based on the Lax–Friedrichs splitting of the
flux vector. The refinement studies show that for the second-order scheme, neither grid
adaptation strategy improves the numerical solution accuracy compared to that calculated
on a uniform grid with the same number of grid points. For the fourth-order scheme, the
dominant first-order error component is reduced by the grid adaptation, while the high-
order error component drastically increases, because of the grid nonuniformity. As a result,
the grid adaptation provides improvement in the solution accuracy only asymptotically. A
simple error analysis of the grid redistribution and local grid refinement methods reveals
the main reasons why the grid adaptation methods do not improve the accuracy of captured
discontinuities. Summarizing the numerical and theoretical results, we propose a new grid
adaptation criterion for captured discontinuities.

The paper is organized as follows. Section 2 presents the blunt body problem and the
spectral solution. Section 3 presents the finite difference methods used in the studies.
Section 4 presents the grid adaptation strategies, including grid redistribution and local
grid refinement. Section 5 presents the error analysis for the effects of grid adaptation
on solution accuracy. Section 6 presents the second- and fourth-order results; Section 7
presents the new grid adaptation criterion for captured shocks; and Section 8 presents the
conclusions of the work.

2. SETTING OF A PROBLEM AND ITS “EXACT” SOLUTION

We consider the steady-state supersonic inviscid gas flow around a circular cylinder. This
test problem is desirable because the bow shock is 2-D, rather than simply a 1-D shock
rotated into a 2-D reference frame. Furthermore, the problem is simple enough to obtain an
“exact” solution.

The conservation law form of the 2-D Euler equations written in Cartesian coordinates
(x, y), as

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

= 0,

(1)

U =




ρ

ρu
ρv

ρe


, F =




ρu

ρu2 + P
ρvu

u(ρe + P)


, G =




ρv

ρvu

ρv2 + P

v(ρe + P)


,

is used to describe the flowfield. The variables ρ, u, v, P , and e are the density, x-velocity,
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y-velocity, pressure, and total specific energy, respectively. The governing equations are
closed with the equation of state for a perfect gas

P = (γ − 1)ρ

[
e − 1

2
(u2 + v2)

]
,

where γ is the ratio of specific heats, which is assumed to have a constant value of 1.4.
To use different grid adaptation techniques, a differentiable one-to-one coordinate trans-

formation,

τ = t

ξ = ξ(x, y) (2)

η = η(x, y),

is applied to map a physical domain with curvilinear boundaries onto a unit square. Note
that the ξ and η coordinates do not depend on time and, therefore, moving grids are not
considered in the present study.

The Euler equations in the curvilinear coordinates (2) can be written in conservation law
form as

∂Û
∂τ

+ ∂F̂
∂ξ

+ ∂Ĝ
∂η

= 0,

(3)

Û = 1

J
U, F̂ = 1

J
(ξx F + ξyG), Ĝ = 1

J
(ηx F + ηyG),

where the Jacobian of the mapping is given by

J = ∂(ξ, η)

∂(x, y)
= ξxηy − ξyηx .

To close the governing equations, boundary conditions should be specified. Because of the
symmetry along the body centerline, only half of the domain is considered. The following
boundary conditions are imposed along the symmetry line:

v|η=0 = 0,
∂u

∂η

∣∣∣∣
η=0

= ∂ P

∂η

∣∣∣∣
η=0

= ∂ρ

∂η

∣∣∣∣
η=0

= 0. (4)

On the cylinder surface, the no penetration boundary condition,

uyξ − vxξ |ξ=1 = 0, (5)

is imposed. At the supersonic inflow, all flow quantities are prescribed. The outflow boundary
is chosen so that the outflow is fully supersonic and, therefore, no boundary conditions are
imposed.

A spectrally accurate numerical solution to the blunt body problem described above is
found by using a Chebyshev bow-shock fitting algorithm [17]. The shock position always
coincides with the inflow boundary along which the Rankine–Hugoniot relations are used.
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The physical domain changes continuously as the bow shock moves to its steady-state
position, while the computational domain remains unchanged. The Chebyshev collocation
method is employed in both the radial and circumferential directions to discretize the Euler
equations. The equations are then marched in time until a steady-state solution is reached.
Further details on the Chebyshev shock-fitting technique can be found in [17]. As has been
shown in [2], the spectral solution is exact to at least eight significant digits. This solution,
which is further referred to as the “exact” solution, is spectrally interpolated to a sequence
of uniformly spaced grids to evaluate error in finite difference solutions.

3. SECOND- AND FOURTH-ORDER NUMERICAL METHODS

Second-order fully upwind and fourth-order upwind-biased linear finite difference
schemes based on the Lax–Friedrichs flux splitting are used to discretize the Euler equations.
These approximations can be written in a semi-discrete form as

dÛ
dτ

= 1

2
(D−

ξ F̂+ + D+
ξ F̂−) + 1

2
(D−

η Ĝ+ + D+
η Ĝ−), (6)

where D±
ξ and D±

η are linear finite difference operators in ξ and η, respectively. The Lax–
Friedrichs fluxes are given by

F̂± = F̂ ± ∣∣λmax
ξ

∣∣Û
(7)

Ĝ± = Ĝ ± ∣∣λmax
η

∣∣Û,

where |λmax
ξ | and |λmax

η | are the maximum values over the entire domain of the contravariant
eigenvalues |û| + ĉ and |v̂| + ĉ, accordingly.

The following second- and fourth-order spatial operators, D±
2 and D±

4 , are used in the
present analysis,

D−
2 u j = 1

2h
(u j−2 − 4u j−1 + 3u j )

(8)
D+

2 u j = 1

2h
(−3u j + 4u j+1 − u j+2),

D−
4 u j = 1

12h
(−u j−3 + 6u j−2 − 18u j−1 + 10u j + 3u j+1)

(9)
D+

4 u j = 1

12h
(−3u j−1 − 10u j + 18u j+1 − 6u j+2 + u j+3),

where h is a grid spacing either in ξ or in η. For the second-order scheme (8), the second-
order boundary closure is employed at all boundary points. For the fourth-order scheme, the
third-order stencils used near the boundaries are the optimal stencils derived from nearest
neighbor information, biased where possible in an upwind direction. These second- and
fourth-order methods will be referred to as “LF-2-2” and “LF-4-3,” respectively.

All finite difference grids considered in the present study are constructed such that a
corner grid point coincides with the stagnation point. It has been found that this finite
difference formulation may lead to numerical instability if all the boundary conditions on
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the symmetry line are imposed weakly through the flux. This instability is caused by the
weak formulation of the boundary condition for the v component of the velocity vector.
Imposing this boundary condition in the strong sense eliminates the numerical instability.
Numerical calculations have shown that the present formulation is as robust as the staggered
formulation typically adopted by finite difference algorithms near stagnation points.

On the supersonic inflow, the entire state vector U|ξ=0 is specified. On the outflow bound-
ary, the solution is calculated by using high-order fully upwind approximations, i.e., no
boundary conditions are imposed, which is consistent with the characteristic analysis for
the supersonic outflow. On the impermeable wall, the no penetration boundary condition is
imposed weakly by solving the Riemann problem approximately. Note that at steady state,
the normal velocity at the wall is nonzero, but converges to zero with an order property
consistent with overall formulation.

A three stage explicit Runge–Kutta method is used to drive the solution to steady state.
To accelerate the convergence, the implicit residual smoothing method proposed in [18] is
employed.

4. GRID ADAPTATION METHODS

The main purpose of the present study is to evaluate the influences of grid adaptation
on overall solution accuracy, in the presence of the first-order error component resulting
from shock capturing. The grid refinement studies presented in [1, 2] show that high-
order shock-capturing schemes are first-order accurate downstream of shocks. Hence, away
from the shock, the pointwise error is proportional to the grid spacing, and consequently
decays like O(h) as the grid is refined. At the same time, if a grid is not aligned with the
discontinuity, any shock-capturing numerical scheme gives a discrete shock profile with at
least one intermediate point in the shock. Thus, on sufficiently fine grids, the true pointwise
error achieves its global maximum value of O(1) at the discontinuity. To demonstrate
this error behavior, the centerline pressure error distribution for the M∞ = 3 blunt body
problem calculated using the LF-4-3 scheme is shown in Fig. 1. As one can see in the figure,
the true pointwise error is singular at the shock located at x = 1.698. This conclusion is
based on the property of shock-capturing schemes and does not depend on grid spacing
in the vicinity of the shock. As a result, any grid adaptation procedure based on the error
equidistribution principle and the true error will always concentrate grid points or refine the
grid near discontinuities of the solution.

It should be emphasized that the error equidistribution principle is not valid for problems
with strong discontinuities. Actually, this principle is based on the minimization of the
integral norm of the solution error or its estimate, which, in turn, is obtained as the solu-
tion of the Euler–Lagrange differential equation, which cannot be used for discontinuous
functions.

Furthermore, all error estimators found in the literature, such as estimators based on
the truncation error, the finite element residual, recovery techniques, and the extrapolation,
require certain smoothness of the solution of the original differential problem, which is not
a property of discontinuous flows. As a result, these error estimators are singular in regions
where the solution is discontinuous. This singularity corresponding to the singularity of
the true error at the shock leads to excessive grid refinement or clustering of grid points
around the shock. Asymptotically, any grid generator based on the error equidistribution
principle and one of the error estimation procedures mentioned above would generate an
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FIG. 1. Pointwise error for the M∞ = 3 blunt body problem obtained with the LF-4-3 scheme on uniform
grids.

adaptive grid such that the ratio of the local grid spacing at the shock to the neighboring
one, generated in regions where the solution is smooth, approaches zero. This degeneration
in grid spacing occurs because these error estimators become singular at the discontinuity.
In practical applications, this singularity is eliminated by excessive smoothing of the error
estimate function. As a result, the grid adaptation in the vicinity of the shock is driven
by the smoothing procedure rather than by the error estimate itself. Therefore, instead of
considering different error estimators and different grid smoothing techniques, we generate
C∞ adaptive grids which are clustered or locally refined near the shock. This kind of a
grid adaptation is intended to reduce the first-order error component caused by the shock-
capturing procedure and to increase the overall solution accuracy toward the design accuracy
of the numerical scheme used.

Because we know the exact solution, and consequently the exact shock location, an
adaptive grid can be generated analytically. Quasi-one-dimensional grid adaptation can be
employed, assuming that one family of grid lines is aligned with the bow shock. It can
be done because the numerical solution error in the circumferential direction, which is
aligned with the shock, is much smaller than that in the radial direction. To demonstrate
this property, we solve the blunt body problem at M∞ = 3 by using the LF-4-3 scheme
on two sequences of uniform grids. The first one is obtained by doubling the number of
grid points in both the radial and circumferential directions, as follows: 33 × 33, 65 × 65,
129 × 129, and 257 × 257. The second one is generated by refining the grid only in the
radial direction, while the number of grid points in the circumferential direction remains
fixed and equal to 33 for all the grids considered. Figure 2 shows that the numerical solution
errors obtained on these grids are practically identical. It indicates that the discretization
error in the direction parallel to the shock is several orders of magnitude less than that in the
radial direction. Since the numerical solution error is strongly dominated by the radial error
component, we use 1-D grid adaptation with the grid points constrained to move along one
family of fixed radial coordinate lines, such that the grid is always aligned with the exact
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two sequences of grids: (1) uniformly refined in ξ and η, and (2) refined in ξ , while the number of grid points in
η is fixed and equal to 33.

bow shock. Note that this grid adaptation procedure does not produce skewed cells where
the solution accuracy may deteriorate because of small values of the Jacobian [4].

4.1. Grid Redistribution Method

Uniform meshes employed for finite difference calculations are constructed by using
polar coordinates:

x = −r cos θ
(10)

y = r sin θ.

A mapping from the polar to the computational coordinates is given by

ξ = 1 − r − r1

r0(θ) − r1
(11)

η = θ/θmax,

where r0, r1, and θmax are the radius of the inflow boundary (which, in the case of the exact
solution, coincides with the bow shock), the radius of the cylinder, and the maximum value
of θ , respectively. Note that the inflow boundary has been chosen so that the bow shock
standoff distance is equal to 3/4(r0(θ) − r1) for all meshes considered.

As mentioned above, an adaptive grid is constructed by redistributing grid points in 1-D
fashion along the fixed radial lines. The following coordinate transformation is used to
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generate the adaptive grid

ξ̃ =
∫ r1

r f (r, θ) dr∫ r1

r0(θ)
f (r, θ) dr (12)

η̃ = θ/θmax,

with the monitor function f (r, θ) defined as

f (r, θ) = 1√
1 + [

d3(d2 − 1) r − rs (θ)

rs (θ) − r1

]2

(13)

d3 = d1 + d2 − d1

1 + eδ(r−rs (θ))
,

where rs(θ) is the bow shock radius, d1, d2, and δ are parameters. Note that the same monitor
function Eq. (13) is used to generate all adaptive grids, independently of the number of grid
points. Such a choice of the monitor function provides that the metric coefficients are C∞

functions in the entire physical domain, which is important for constructing high-order
accurate finite difference approximations on nonuniform grids. The ratios of the adaptive
grid spacing to the uniform one corresponding to three sets of the parameters d1 and d2

(d(1)
1 = 6.45 and d(1)

2 = 2.15, d(2)
1 = 9.3 and d(2)

2 = 3.1, d(3)
1 = 12.6 and d(3)

2 = 4.2) used
in the numerical calculations are shown in Fig. 3. The figure shows that the adaptive grid
spacing achieves its minimum value at the shock, while away from the shock, it behaves as a
linear function. This linear dependence, which corresponds to the well-known exponential
stretching, provides that in smooth flow regions, the leading truncation error terms resulting
from the grid nonuniformity and the approximation of F̂ξ are of the same order.
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4.2. Local Grid Refinement Method

As shown above, for the blunt body problem in question, the radial error component is
much larger than the circumferential one. Therefore, the local grid refinement method is
also employed in a 1-D manner. The resulting computational grid is obtained as a sequence
of structured quadrilateral nested grids that are aligned with the shock and arranged in
block structures, such that each of them has the same family of radial lines, η = const. This
local grid refinement procedure ensures that there are no “hanging” nodes on the embedded
interfaces and that the smoothness of the original background grid is maintained. Taking
into account that the maximum pointwise error occurs at the shock and that the exact shock
position is known a priori, a family of the nested grids is generated only in the vicinity of
the exact shock location, while the original uniform grid is used in the rest of the domain.
The width of the region where the grid is locally refined is an adjustable parameter that is
chosen to be larger than a stencil of the numerical scheme used.

This local grid refinement procedure is consistent with the error equidistribution principle,
which says that the grid point distribution is asymptotically optimal if some error measure
is equally distributed over the field. However, for problems with shocks, the error cannot
be equidistributed, because the error function is singular at the discontinuity. In this case,
the stopping criterion for the local grid refinement is not trivial. In the present analysis,
the adaptive mesh refinement method is used to recover the design accuracy of a high-
order shock-capturing scheme downstream of the shock. This condition can be used as
the stopping criterion, which determines how many levels of refinement are required to
guarantee that the numerical solution error obtained on the adaptive grid is consistent with
the design order of the scheme employed. Using the heuristic model expressing the first-
order nature of any high-order shock-capturing scheme [2], one can represent the total error
in the numerical solution as

ε = C1h + C ph p, (14)

where h is a grid spacing, ε is the solution error, p is the design order of the numerical
algorithm, and C1 and C p are problem dependent constants. If the solution smoothness is
consistent with the order of the approximation used, then C1 = 0 and C p is proportional to
the (p + 1)th derivative of the solution. On the other hand, if there are unresolved features
in the flow such as shock waves and contact discontinuities, the first-order error component
is generated by the shock-capturing procedure, so that C1 �= 0. Note that the shock error
component may in general include not only the first-order term, but also higher order terms
in its expansion. Asymptotically, the shock error component is dominated by the first-order
term C1h, whereas the design-order error component is dominated by the leading truncation
error term C ph p. Therefore, only the leading shock error and design-order error terms are
retained in Eq. (14).

As follows from Eq. (14), to obtain the pth-order accurate solution, the local grid spacing
near the shock must be of the order of H p, where H is a grid spacing of the background mesh.
Despite the simplicity of this criterion, the total number of grid points, and consequently
the complexity of the algorithm, can increase significantly. Actually, if a pth-order scheme
is used to discretize the governing equations on the background uniform mesh with a grid
spacing H , the local grid size in the vicinity of the shock should be

h = O(H p) (15)

to obtain a convergence rate of p.
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Assuming that the local grid refinement procedure starts from the background mesh and
a nested grid at the next level is refined in the radial direction by a factor of 2, the total
number of levels of refinement needed to satisfy Eq. (15) is

l = −(p − 1) log2 H. (16)

Upon completion of this local grid refinement procedure, the total number of grid points
becomes

Ntotal = 1 + 1

H
+ 2l Nw, (17)

where Nw is a half-width of a region in which the background mesh is locally refined.
For example, if one uses a fourth-order scheme on a 65 × 65 background mesh, the locally
refined grid satisfying condition (15) and corresponding to Nw = 8 has 353 grid points in the
radial direction. Thus, the total number of grid points is increased by a factor of 6. In practical
applications, a grid is refined in both ξ and η; therefore, the same increase in the number of
grid points should be in each spatial direction. Note that the time step �t is also refined by the
same factor so that ratios �t/�ξ and �t/�η are the same on all nested grids, ensuring
the stability with explicit finite difference schemes. As follows from the above example,
the local grid spacing near the shock would be of the order of O(2−24), which makes the
grid refinement study practically impossible. Therefore, instead of satisfying Eq. (15), we
perform three series of calculations on locally refined grids that have a different number
of levels of refinement. During the grid refinement study, the background mesh is refined
globally. From Eq. (15) it follows that the number of levels of refinement is increased by
one. For instance, if a locally refined grid corresponding to a 33 × 33 background mesh has
three levels of refinement, then on the next 65 × 65 background grid, one level of refinement
is added, so that the total number of levels becomes four.

Remark 1. The grid adaptation procedures described above are based on the fact that
the exact shock location is known a priori. However, in practice, the exact shock position
is unknown, which may introduce an additional error in the numerical solution. As has
been shown in [16], traditional grid adaptation methods can provide that shocks are well
resolved, but their locations are highly inaccurate due to the lack of resolution of smooth
portions of the solution.

5. ANALYSIS OF THE ERROR CAUSED BY GRID NONUNIFORMITY

5.1. Error Introduced by Grid Redistribution

Let us estimate the error in the smooth portion of the numerical solution, which is
introduced by concentrating grid points near the shock. Because grid points are redistributed
in a 1-D manner in the present study, we consider the following 1-D scalar equation:

ψt + fx (ψ) = 0, (18)

which can be treated as a 1-D analog of the hyperbolic portion of the 2-D steady Euler
equations (1). It can be shown by rewriting the Euler equations (1) in nonconservative form

∂U
∂x

+ A
∂U
∂y

= 0, (19)
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where A = ( ∂F
∂U )−1( ∂G

∂U ). The type of the equations (19) is governed by the eigenvalues of
the A matrix, which are

λ1,2 = v

u
(20)

λ3,4 = uv ± c
√

u2 + v2 − c2

u2 − c2
,

where c is the speed of sound. For the blunt body problem under consideration, eigenvalues
λ1 and λ2 are always real, regardless of the local Mach number. Therefore, the first-order
error generated by the shock-capturing procedure at the shock propagates downstream along
the streamlines v/u.

Assuming that the initial profile ψ(0, x) is discontinuous, the solution error of Eq. (18)
downstream of the captured shock consists of the first-order error component caused by the
shock capturing and the design-order truncation error component. Thus,

ε = C1�x + Tp(x), (21)

where C1 is a constant dependent on the solution, �x is a local grid spacing, and Tp is the
leading truncation error term of a pth-order shock-capturing scheme used for approximation
of Eq. (18). Since our aim is to estimate the influence of the spatial nonuniformity on
the numerical solution accuracy, the temporal error component is not considered. To the
authors’ knowledge, very little work has been done to estimate the coefficient C1. In the
present analysis, it is assumed that the coefficient C1 approaches a constant on sufficiently
fine grids. This assumption is corroborated by the numerical calculations presented in
Section 6.

To evaluate the leading truncation error term on a nonuniform grid, a p + 1 times differ-
entiable one-to-one coordinate transformation,

t = τ

x = x(ξ),

between the physical and computational spaces is considered. The nonuniform grid in the
physical space is generated as images of nodes of a uniform mesh in the computational
domain Q:

x j = x(ξ j ), ξ j = j

J
, j = 0, J . (22)

It is assumed that x(ξ) is a C∞ function such that xξ > 0 ∀ξ ∈ Q. Transferring the x-
derivative in Eq. (18) to the computational space, Eq. (18) is rewritten as

ψτ + fξ (ψ)

xξ

= 0. (23)

Approximating fξ and xξ by some pth-order finite difference formulas yields

L(p)
h ( fx ) =

∑ j+n2
n= j−n1

αn fn∑ j+m2
m= j−m1

βm xm

, (24)
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where Lh is a finite difference operator; n1, n2, αn and m1, m2, βm depend on particular
approximations used for evaluating fξ and xξ , respectively. It should be stressed that the
present analysis is performed in regions where the solution is smooth, so it is assumed that
all derivatives needed for the derivation are continuous functions on ξ ∈ [0, 1]. Expanding
the numerator and denominator of Eq. (24) in a Taylor series about ξ j and omitting the
index j on the right hand side, we have

j+n2∑
n= j−n1

αn fn = fξ + C f
p f (p+1)

ξ �ξ p + O(�ξ p+1)

(25)
j+m2∑

m= j−m1

βm xm = xξ + Cx
px (p+1)

ξ �ξ p + O(�ξ p+1),

where x (p+1)
ξ = ∂ p+1x

∂ξ p+1 , f (p+1)
ξ = ∂ p+1 f

∂ξ p+1 , �ξ = 1/J , and C f
p and Cx

p are constants dependent
on αn and βm , respectively. Substituting Eq. (25) into Eq. (24) and taking into account that
xξ > 0, ∀ξ ∈ [0, 1], one can write

Lh( fx ) = fξ + C f
p �ξ p f (p+1)

ξ

xξ

(
1 + Cx

p
�ξ p

xξ
x (p+1)

ξ

) + O(�ξ p+1). (26)

If �ξ is chosen to be sufficiently small so that �ξ p|x (p+1)
ξ /xξ | � 1, Eq. (26) can be lin-

earized as follows:

Lh( fx ) = 1

xξ

(
fξ + C f

p �ξ p f (p+1)
ξ

)(
1 − Cx

p

�ξ p

xξ

x (p+1)
ξ

)
+ O(�ξ p+1). (27)

Note that the error introduced by the linearization is of the order of O(�ξ 2p). Neglecting
higher order terms in Eq. (27), the leading truncation error term can be recast as

Tp(x) = Lh( fx ) − fx = C f
p �ξ p f (p+1)

ξ

xξ

− Cx
p�ξ p x (p+1)

ξ

x2
ξ

fξ . (28)

With the first-order error component, the solution error downstream of the shock becomes

ε = C1xξ�ξ + C f
p �ξ p f (p+1)

ξ

xξ

− Cx
p�ξ p x (p+1)

ξ

x2
ξ

fξ . (29)

From the above equation it follows that the error in the smooth portion of the solution consists
of three parts. The first one is due to the shock-capturing procedure. The second one, which
also exists on uniform meshes, arises from the evaluation of fξ . The third one is caused by
the grid nonuniformity. When the grid is clustered in the vicinity of the discontinuity, the
metric coefficient xξ changes rapidly, achieving its minimum value at the shock. As has
been shown earlier, any grid adaptation technique based on the error minimization or the
error equidistribution principle concentrates grid points near discontinuities of the solution,
because the true error and its estimates reach their maximum values at the singularity. From
Eq. (29) it follows that this kind of grid adaptation reduces the first-order error component,
but at the same time, the second and, especially, the last term of the numerical solution error
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increase drastically in regions where the x (p+1)
ξ becomes very large because of the strong

grid nonuniformity. In other words, traditional grid adaptation methods based on the grid
redistribution technique transfer the error from the first-order term to the design-order term.
Although, asymptotically, the solution error is dominated by the first-order shock error,
numerical calculations show that the coefficient C1 in Eq. (29) may be very small. As will
be shown in Section 6, when the blunt body problem is solved by using the second-order
fully upwind scheme based on the Lax–Friedrichs flux splitting, the numerical solution
error downstream of the shock is dominated by the design-order error component for all the
grids considered, i.e., ‖C1h‖ < ‖C ph p‖. As a result, the first-order error reduction owing
to the grid adaptation is much less than the high-order error introduced by clustering grid
points near the shock, which ultimately decreases the overall solution accuracy.

5.2. Error Introduced by Local Grid Refinement

In contrast to the grid redistribution method, the local grid refinement approach described
earlier does not change the metric tensor of the mapping and, therefore, the error component
resulting from the high-order derivatives of the metric coefficients remains the same as on the
nonadaptive background mesh. Despite this advantage, the local grid refinement introduces
additional error caused by an abrupt change in grid spacing at interfaces between coarse
and fine grids and by interface boundary conditions.

To illustrate the main problems associated with the local grid refinement method, we
investigate wave propagation properties when there is a discontinuity in grid spacing. A
scalar linear equation,

�x + a�y = 0, (30)

is considered as a model problem, where a is a positive constant representing tangent of
the angle between the freestream flow and the x-axis. In the numerical calculations, the
parameter a was chosen to be 0.34. The model equation which can be treated as a scalar
analog of the Euler equations (19) is solved on a unit square with the following boundary
conditions: �(0, y) = eIωy and �(x, 0) = e−Iωax . To simplify the analysis, we seek the
solution of Eq. (30) in the form

�(x, y) = ϕ(x)eIωy, (31)

where I = √−1. Substituting Eq. (31) in Eq. (30) yields

ϕx + I aωϕ = 0. (32)

The above equation is approximated by using a second-order fully upwind scheme in the
interior and a two-point first-order upwind approximation at the inflow boundary. First,
we consider a uniform grid with grid spacing h. In this case, the corresponding discrete
equations are

3

2
ϕ j − 2ϕ j−1 + 1

2
ϕ j−2 + I aωhϕ j = 0, j = 2, J (33)

and

ϕ1 − ϕ0 + I aωhϕ1 = 0. (34)
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Introducing a parameter α = aωh, Eq. (33) becomes

(
3

2
+ α I

)
ϕ j − 2ϕ j−1 + 1

2
ϕ j−2 = 0. (35)

Substituting the solution of the form

ϕ j = cλ j (36)

into the discrete equation (35) yields

(
3

2
+ α I

)
λ2 − 2λ + 1

2
= 0. (37)

The quadratic equation can easily be solved to give

λ1,2 =
1 ±

√
1 − 1

2

(
3
2 + α I

)
3
2 + α I

. (38)

Thus, the general solution of Eq. (35) is given by

ϕ j = c1λ
j
1 + c2λ

j
2. (39)

The unknown coefficients c1 and c2 are found by using the initial condition ϕ|x=0 = ϕ0 and
Eq. (34), as follows:

c1 + c2 = ϕ0
(40)

(1 + α I )(c1λ1 + c2λ2) − c1 − c2 = 0.

The exact discrete solution Eqs. (31, 38–40) has been derived under the assumption that
the computational grid is uniform. However, the same approach can be applied to construct
the discrete solution on a locally refined grid. Without loss of generality, only a two-level
locally refined grid with a factor of two refinement, i.e., h1/h2 = 2, is considered. The exact
discrete solution on the locally refined grid can be constructed as follows. Assuming that
the coarse grid with grid spacing h1 = h covers the left half of the domain, and that the
discontinuity in mesh size is located at the midpoint x = 1/2, the solution at this point is

ϕ
(1)
J/2 = c11λ

J/2
11 + c12λ

J/2
12 , (41)

where c11 = c1, c12 = c2, and λ11 and λ12 are roots of the characteristic polynomial Eq. (37)
corresponding to the background mesh h1 = h. The above numerical solution can be treated
as an incident wave traveling from left to right, which is then transmitted by the interface
between the coarse and fine grids. For the hyperbolic equation (30), the solution of the
Riemann problem at the interface is trivial ϕright = ϕleft. Since the same fully upwind scheme
Eq. (33) is used in the right half of the domain, the discrete solution on the fine nested grid
can be written in the same form as Eqs. (38–40). However, instead of the grid spacing
h1 = h, one should use the grid spacing h2 = h/2, and the Direchlet boundary condition
at x = 0 should be replaced with the solution of the Riemann problem at the midpoint, i.e.,
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u|x=1/2 = ϕJ/2, where ϕJ/2 is given by Eq. (41). Thus, the exact discrete solution on the
locally refined mesh is

ϕ
(2)
j = c21λ

j
21 + c22λ

j
22, (42)

where λ21 and λ22 are defined by Eq. (38) with α = aωh2, and the coefficients c21 and c22

are the solution of the following linear system of equations:

c21 + c22 = ϕ
(1)
J/2

(43)
(1 + α I )(c21λ21 + c22λ22) − c21 − c22 = 0.

The exact discrete solution Eqs. (41–43) calculated on the locally refined grid is compared
with the uniform grid solution at x = 1. To determine the influence of the grid discontinuity
on the numerical solution accuracy, we compare the error obtained at x = 1 on both the
locally refined and corresponding uniform grids. The error is calculated as the absolute value
of the difference between the discrete and analytical solutions of the original differential
equation (30), which is

�(x, y) = e−I aωx eIωy . (44)

The ratio of the error obtained on the locally refined mesh to the uniform grid solution
error corresponding to four grid spacings of the background mesh (h = 10−2, 10−3, 10−4,
and 10−5) is plotted versus ω3h2 in Fig. 4. Note that the parameter ω3h2 has been chosen
so that it is proportional to the leading truncation error term of the second-order scheme
used. Therefore, for small values of ω3h2 corresponding to the fully resolved solution,
the error ratios calculated on grids with different background grid spacings are practically
identical. The curves corresponding to different mesh densities begin to diverge at a critical

Omega3h2

E
rr

o
r 2

/E
rr

or
1

0 10 20 30 40 50
0

1

2

3

4

5

6

7

h=10-2

h=10-3

h=10-4

h=10-5

FIG. 4. Ratio of the error obtained on the two-level locally refined grid to the error obtained on the corre-
sponding background grid.



296 YAMALEEV AND CARPENTER

value of ω3h2 that corresponds to the point where the error obtained on the locally refined
mesh becomes equal to the error obtained on the background mesh. Since this point is
asymptotically independent of the grid spacing, we can introduce the critical frequency

ω∗ ≈
(

9.3

h2

)1/3

. (45)

If 0 < δ < ω < ω∗, where δ is a small positive constant, then the locally refined grid
provides better accuracy than the corresponding background mesh. Note that the constant
in the formula (45) for the critical frequency ω∗ depends on the numerical scheme used,
the angle between the freestream flow and the x-axis, and the size of the domain. Despite
this dependence, for any stable second-order scheme, the qualitative behavior ω∗ ∼ h−2/3

always remains the same.
If the frequency of the exact solution exceeds the critical value ω∗, it cannot be resolved

on a uniform grid with the grid spacing h. As a result, the errors ratio exhibits oscillatory
behavior. Note, however, that for all the grids considered, there exists the local maximum
at ω3h2 ≈ 15, corresponding to the frequency that is most strongly amplified by the abrupt
change in grid spacing, as is evident in Fig. 4. The main reason for such a behavior is the
hyperbolic nature of Eq. (30). Actually, if error has been introduced on the coarse grid, it
propagates downstream along the characteristic. In the case of discontinuous solutions, such
as shock waves, the captured discontinuity involves all frequencies and, therefore, cannot
be fully resolved on any grid. The error component corresponding to these unresolved
frequencies propagates downstream along the characteristics and amplifies at interfaces. The
error amplification occurs because of the discontinuity in grid spacing and the approximate
interface boundary conditions. It should be emphasized that the error amplification becomes
stronger, if either the number of interfaces or the grid refinement factor increases, or the
grid is globally refined.

As one can see in Fig. 4, there is a boundary layer at ω3h2 → 0. This deterioration in
accuracy for the lowest frequencies is caused by reducing by one the order of approximation
at the first point of the coarse and fine grids. To demonstrate this property, we estimate the
ratio of the solution error obtained on the locally refined mesh to one obtained on the
corresponding uniform grid, when the exact solution frequency is sufficiently small, i.e.,

ω � h−2/3. (46)

If inequality (46) holds, then the truncation error analysis can be applied. Taking into account
the fact that the error of integration of Eq. (32) is proportional to the length of the integration
interval, the ratio of the truncation errors can be estimated as

ε2

ε1
=

∣∣∣∣∣
[
C1ϕxx h2 + C2ϕxxx h2

(
1
2 − h

)] + [
C1ϕxx

(
h
2

)2 + C2ϕxxx
(

h
2

)2( 1
2 − h

2

)]
C1ϕxx h2 + C2ϕxxx h2(1 − h)

∣∣∣∣∣, (47)

where C1 and C2 are constants dependent on the first- and second-order approximations
used, e.g., in our case C1 = −1/2 and C2 = −1/3. In Eq. (47), the first term in the square
brackets is the integration error on the coarse grid with grid spacing h, and the second
term is the integration error obtained on the fine grid with grid spacing h/2. Note that
the C1ϕxx h2 and C1ϕxx (h/2)2 terms are due to the first-order approximation used at the
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first grid points of the coarse and fine grids, respectively. With the exact solution Eq. (44),
Eq. (47) is reduced to

ε2

ε1
=

∣∣∣∣∣
5
4 C1 + I C2ω

(
1
2 − h

) + I C2
ω
4

(
1
2 − h

2

)
C1 + I C2ω(1 − h)

∣∣∣∣∣. (48)

Letting h → 0 yields

ε2

ε1
= 5

4
(
C2

1 + C2
2ω

2
)
√

C4
1 + 1

4
C4

2ω
4 + 5

4
C2

1C2
2ω

2. (49)

From the above equation it follows that for the lowest frequency ω → 0, the truncation error
calculated on the globally uniform grid is 5/4 times less than that obtained on the locally
refined grid having one and a half times as many grid cells as the corresponding uniform
mesh. As the wave frequency increases, the errors ratio tends to its asymptotic value of
5/8. Note that if the governing equation is approximated with a second-order scheme in the
entire computational domain, then the first-order terms in Eq. (47) vanish, providing that
ε2/ε1 = 5/8, ∀ω : ω � h−2/3.

Remark 2. In solving the 2-D Euler equations, two additional sources of errors, which
are not present in the test example considered above, can arise. The first one is due to
an approximate solution of the Riemann problem at interfaces between the coarse and
fine grids. The second source of error is caused by the reflection of waves going through
interfaces. Note that in the above example, there is no numerical reflection, because the fully
upwind formulation, which is consistent with the characteristic of Eq. (30), is employed.

6. RESULTS AND DISCUSSION

The inviscid M∞ = 3 flow around a circular cylinder is used to test the accuracy of
the grid redistribution and local grid refinement methods. A grid refinement study is per-
formed to investigate the influence of the grid adaptation on the numerical solution accuracy
downstream of the captured bow shock. The following sequence of grids is used in the grid
refinement study: 33 × 33, 65 × 65, 129 × 129, and 257 × 257. Error in the smooth portion
of the solution is measured in the L2 sense, as

‖φ − φex‖L2 =
√∑K

k=1

∑J
j=1

(
φk j − φex

k j

)2

K J
, (50)

where φk j and φex
k j are the numerical and exact values of φ at point (k, j), and K and J are

the number of grid points in the domain of interest. The norm of wall quantities is formed
in a manner similar to Eq. (50), but only the wall points are used in the formula.

6.1. Grid Redistribution Method

An adaptive grid is generated by equidistributing the monitor function Eq. (13), as de-
scribed in Section 4.1. Three sets of the parameters d1 and d2 (6.45 and 2.15, 7.95 and 2.65,
12.6 and 4.2) in Eq. (13) generate three families of the adaptive grids. These three sets of
parameters d1 and d2 provide that the ratio of the adaptive grid spacing to the uniform grid



298 YAMALEEV AND CARPENTER

x
y

-2 -1.5 -1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

A B

C

D

FIG. 5. Adaptive 65 × 65 grid (�xun/�xmin = 2.5) generated by the grid redistribution method.

spacing at the shock is equal to 1.5, 2.5, and 4, respectively. A sample 65 × 65 adaptive grid
generated by this grid redistribution procedure is shown in Fig. 5. The region around the
shock is well resolved by reducing the local grid spacing by a factor of 2.5 compared with
the uniform mesh with the same number of grid points. Figure 6 shows the pressure contours
obtained with the LF-2-2 scheme on the 65 × 65 uniform (left) and adaptive (right) grids.
As one might expect, the grid adaptation improves the shock resolution. To give greater
insight into how the grid clustering influences on the shock smearing, the centerline pressure
distributions computed on these adaptive and uniform grids are depicted in Fig. 7. For all
the grids considered, the bow shock is captured within six cells, which is typical for the
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FIG. 6. Pressure contours obtained with the LF-2-2 scheme on 65 × 65 uniform (left) and adaptive (right)
grids.
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FIG. 7. Centerline pressure distributions calculated using the LF-2-2 scheme on the 65 × 65 uniform and
adaptive grids.

Lax–Friedrichs flux splitting employed. At the same time, the shock thickness, which is pro-
portional to the local grid spacing in the physical space, becomes thinner as the clustering of
grid points increases. Locally near the shock, the numerical solution profile, which remains
practically unchanged, is scaled according to the local grid spacing. Note that the numerical
solutions obtained with the LF-4-3 finite difference scheme demonstrate similar behavior.

Grid refinement studies using three families of adaptive grids and one family of uniform
grids that have the same number of grid points are presented in Figs. 8–13. The L2 norm of
the wall pressure error is shown in Fig. 8. As one can see in the figure, the convergence rate
obtained for the smooth problem is consistent with the design order of the scheme used.
The smooth problem is formulated in the region bounded by the exact shock wave and the
cylinder, so that there is no discontinuity in the domain. The inflow boundary condition
at the bow shock is implemented by solving the Riemann problem between the numerical
state and the exact postshock conditions from the spectral solution.

Although the shock resolution is improved by clustering grid points around the shock,
the error in the pressure on the body surface increases by a factor of 5–10 compared with
that calculated on the uniform grid with the same number of grid points. It should be noted
that the higher the concentration of grid points in the vicinity of the shock, the larger the
error that is introduced into the numerical solution by the grid nonuniformity. The grid
adaptation results in the metric coefficients drastically increasing near the shock, which, in
turn, considerably decreases the accuracy in regions where the solution is smooth. These
numerical calculations corroborate the analysis presented in Section 5.1. Surprisingly, the
shock-capturing solutions obtained on uniform grids not only are more accurate than the
corresponding solution of the smooth problem, but also exhibit higher convergence rate on
fine meshes. This anomalous behavior present in the shock aligned cases did not generalize
to nonshock aligned meshes. Nevertheless, this superconvergence is not yet well understood
and requires additional investigation.
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FIG. 8. Grid refinement study at M∞ = 3, showing the wall pressure error obtained with the LF-2-2 scheme
on uniform and adaptive grids.

The L2 norm of the pressure error calculated in the half of the domain closest to the
body is presented in Fig. 9. Such a choice of the domain enables us to exclude any point
close to the captured shock, where the pointwise error is of the order of O(1). The error
behavior obtained in the field is very similar to that exhibited by the wall pressure error.
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FIG. 9. Grid refinement study at M∞ = 3, showing the pressure error in the half of the domain closest to the
body obtained with the LF-2-2 scheme on uniform and adaptive grids.
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FIG. 10. Grid refinement study at M∞ = 3, showing the wall pressure error obtained with the LF-4-3 scheme
on uniform and adaptive grids.

As in the foregoing comparison, the grid adaptation significantly increases the error in
the smooth portion of the solution. Note that for the LF-2-2 scheme, the first-order error
component is comparable with the design-order error, giving the appearance of the second-
order convergence rate on all the grids considered.
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FIG. 11. Grid refinement study at M∞ = 3, showing the pressure error in the half of the domain closest to
the body obtained with the LF-4-3 scheme on uniform and adaptive grids.
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FIG. 12. Grid refinement study for the pressure integral error obtained with the LF-2-2 scheme on uniform
and adaptive grids.

Error convergence plots obtained with the fourth-order upwind-biased LF-4-3 scheme
are depicted in Figs. 10 and 11 which are analogous to Figs. 8 and 9, accordingly. In
contrast to the second-order scheme, the fourth-order method using uniform grids quickly
approaches the asymptotic limit and exhibits just the first-order convergence on fine grids.
In spite of the fact that the solution error is dominated by the first-order error component,
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FIG. 13. Grid refinement study for the pressure integral error obtained with the LF-4-3 scheme on uniform
and adaptive grids.
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the grid adaptation improves the numerical solution accuracy only asymptotically. On one
hand, the concentration of grid points near the shock reduces the first-order error component,
so that the convergence rate increases towards the design order limit, as shown in Figs. 10
and 11. On the other hand, the high-order error component significantly increases because
of the grid nonuniformity. As a result, the solution error is dominated by the design-order
error component. Despite some improvement in accuracy on the coarsest adaptive grids, the
L2 norm of the solution error obtained on finer adaptive grids is larger than that calculated
on the corresponding uniform grids. As shown in Section 5.1, the main reason for such
a behavior is that the design-order error component, resulted from the approximation of
the metric coefficients, drastically increases, owing to the clustering of grid points near the
shock. Although the adaptive grid solution exhibits a higher convergence rate, the errors
obtained on the corresponding adaptive and uniform grids become comparable only on the
finest 257 × 257 mesh. Hence, the grid redistribution method based on the LF-4-3 scheme
provides improvement in accuracy only on extremely fine grids, which are very seldom
found in practical applications because of the computational cost involved. Note that the
adaptive grid solution error suffers from the first-order degeneration but with much lower
first-order error constant, as follows from Eq. (29).

In the grid convergence studies presented above, the solution error is measured in regions
where the solution is smooth. However, it appears intuitively that the grid adaptation should
reduce the solution error in the vicinity of the shock. One can argue that calculation of
the lift or the drag for discontinuous flows results in an error in these integral quantities
of O(�Ps�xs), where �Ps and �xs are the pressure jump across the shock and the grid
spacing at the shock, respectively. This assumption is the basis for using grid adaptation
methods to reduce the first-order shock error in the lift and drag, which are two of the most
important integral quantities obtained from the solution of the Euler equations.

To check whether the grid adaptation improves the accuracy of the integral quantities, we
compare errors in the pressure integral across the bow shock along line y = 0 calculated
on the same adaptive and uniform grids. Two integration algorithms have been used to
compute the integral. The first one is a standard two-point second-order trapezoidal rule
quadrature formula. The second one uses a piecewise cubic spline to fit the discrete pres-
sure. Then, the spline is integrated analytically, providing a fourth-order accurate integration
formula for sufficiently smooth functions. Although the fourth-order integration procedure
imposes more severe constraints on smoothness of the integrated function, pressure integral
errors obtained with second- and fourth-order quadrature formulas are practically identi-
cal. Therefore, only the results calculated using the fourth-order integration procedure are
presented.

Figures 12 and 13 show the grid refinement study for the pressure integral obtained with
the LF-2-2 and LF-4-3 shock-capturing schemes, respectively. In contrast to conventional
wisdom, the pressure integral calculated with the LF-2-2 scheme on clustered grids is less
accurate than that computed on uniform grids with the same number of grid points. Figure 12
shows that the accuracy of the pressure integral deteriorates as the concentration of grid
points in the vicinity of the shock increases. For the LF-4-3 scheme, slight improvement
of the pressure integral accuracy can be observed on both the coarsest and finest adaptive
grids, while similar deterioration in accuracy occurs on 65 × 65 and 129 × 129 meshes.

It should be emphasized that the error in the pressure integral across the shock behaves
very similarly to the L2 norm of the wall pressure error. This is no surprise because these
quantities are closely connected. To show this relation, we integrate the 2-D steady Euler
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equations over the entire domain to give

∫
V

(Fx + Gy) dV =
∫
�

F · n d� = 0, (51)

where F is the flux tensor, � is the boundary of the physical domain V, n is an outward
pointing unit vector normal to �. As follows from Fig. 5, � = AB − BC + C D + D A.
Thus,

∫
AB

F · n d� = −
∫

BC

F · n d� −
∫

C D

F · n d� −
∫

D A

F · n d�. (52)

Because the finite difference schemes used are fully conservative, Eq. (52) holds not only
for the exact analytical solution, but also for the discrete solution. As follows from Eq. (52),
the accuracy of the solution integral along the centerline AB is determined by the accuracy
of the integrals calculated along the other boundaries including the body surface BC . This
indicates that the integral L2 norm of the wall pressure error is closely related to the accuracy
of the pressure integral along the centerline.

6.2. Local Grid Refinement Method

As follows from the analysis presented in Section 5.2, the most troublesome parts of the
local grid refinement method are the grid discontinuity and the interface boundary condi-
tions. Therefore, special attention has been paid to implementation of the interface boundary
conditions and their accuracy. In the present study, the Roe’s approximate Riemann solver is
used to build a flux at grid interfaces. The left and right states at a grid interface are obtained
as solutions of the Euler equations calculated separately in each subdomain. The numerical
flux built this way is then used to construct the second- and fourth-order approximations,
Eqs. (8)–(9). This implementation of the interface boundary conditions maintains stability,
conservation, and accuracy in multiple dimensions for both second- and fourth-order meth-
ods. Because only matching nested grids are considered, there are no hanging nodes in the
domain.

To verify the accuracy of the interface boundary conditions described above, two calcula-
tions of the smooth M∞ = 2.5 blunt-body problem are performed. The first grid refinement
study is done on a sequence of uniformly spaced grids. Each grid is divided on eight sub-
domains containing the same number of grid points in both the radial and circumferential
directions, as shown in Fig. 14. Pressure contours computed with the LF-4-3 scheme on this
multiblock grid are also shown in Fig. 14. Although the present formulation of the interface
boundary conditions results in the numerical solution being discontinuous at interfaces, the
absolute value of the solution jump at the interface is of the order of the truncation error of
the scheme used. For example, the characteristic interface pressure jump calculated with
the LF-4-3 scheme on a 25 × 33 uniform 8-block grid is O(10−3).

The second series of calculations is performed on a sequence of locally refined grids
similar to those which are used in the shock-capturing formulation. As in the previous test
case, only the flow between the bow shock and the cylinder is considered, i.e., there are
no discontinuities in this subproblem. A three-level locally refined grid corresponding to
a 25 × 33 background mesh and the pressure contours calculated on this grid are shown
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FIG. 14. 8-block 25 × 33 uniform grid (left) and pressure contours (right) of the smooth M∞ = 2.5 flow
calculated with the LF-4-3 scheme.

in Fig. 15. Qualitatively, the solutions obtained on uniform and nested multiblock grids
are very similar. However, the corresponding L2 pressure error norms calculated in the
half of the domain closest to the body are quite different, as seen in Fig. 16. As shown in
Section 5.2, the presence of interfaces in the domain introduces additional error in the
numerical solution. On the coarsest 8-block uniform grid, the solution is less accurate than
that obtained on the corresponding single-block uniform grid. This reduction in accuracy
is due to the fact that all grid points in each subdomain are treated as the boundary points.
Therefore, the third-order boundary closure approximation is used on the entire coarsest
mesh. On finer meshes, the multiblock uniform grid formulation exhibits the design-order
convergence rate and provides practically the same accuracy as on the single-block uniform
grid. In contrast to multiblock uniform grid results, the locally refined grid formulation leads
to both one order of magnitude reduction in accuracy and deterioration of the convergence
rate to 3 on fine meshes. These numerical results corroborate the theoretical analysis, which
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FIG. 15. Two-level 41 × 33 locally refined grid (left) and pressure contours (right) of the smooth M∞ = 2.5
flow calculated with the LF-4-3 scheme.
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FIG. 16. Grid refinement study at M∞ = 2.5, showing the pressure error in the half of the domain closest to
the body obtained with the LF-4-3 scheme on the 8-block uniform and 2- to 5-level locally refined grids.

shows that the error components corresponding to the lowest fully resolved and the high
unresolved frequencies are amplified by the grid discontinuity. Such a reduction in accuracy
is also caused by the approximate solution of the Riemann problem and by spurious reflection
of waves traveling through the interfaces.

To test the accuracy of the local grid refinement method, the LF-2-2 and LF-4-3 schemes
are used to capture the bow shock around a Mach 3 circular cylinder. A typical three-level
137 × 65 locally refined grid used in both second- and fourth-order formulations is shown
in Fig. 17. This adaptive grid corresponding to 65 × 65 background uniform mesh is locally
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FIG. 17. Three-level 137 × 65 locally refined grid.



ACCURACY OF ADAPTIVE METHODS FOR SHOCKS 307

x

y

-2 -1.5 -1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

x

y

-2 -1.5 -1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

FIG. 18. Pressure contours obtained with the LF-4-3 scheme on the 65 × 65 uniform (left) and 3-level
137 × 65 locally refined (right) grids.

refined near the exact shock location, such that the local grid spacing of the finest nested
subgrid is eight times smaller than that of the background mesh. Figure 18 shows the pressure
contours calculated on these uniform and locally refined grids. As expected, the shock wave
front becomes much sharper on the adaptive grid. To demonstrate the improvement in the
shock resolution owing to the local grid refinement, the centerline pressure distributions
computed on the three-level and five-level locally refined grids are compared with the
uniform grid results in Fig. 19. The comparison shows that the bow shock is smeared over
six grid cells for all the grids considered, while the shock thickness in the physical space is
reduced proportionally to the local grid spacing.
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FIG. 19. Pressure distributions along line y = 0 calculated on the 65 × 65 uniform and 3- and 5-level locally
refined grids.
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FIG. 20. Grid refinement study at M∞ = 3, showing the wall pressure error obtained with the LF-2-2 scheme
on uniform and locally refined grids.

Despite improved shock sharpness, there is no reduction in the L2 error norm measured
in smooth portion of the numerical solution calculated with the second-order method, as is
evident in Figs. 20 and 21 which are analogous to Figs. 8 and 9. Figure 20 shows that the L2

norm of the wall pressure error obtained with the LF-2-2 scheme on locally refined grids
increases by a factor of 101 − 102 compared with the uniform grid results. The pressure
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FIG. 21. Grid refinement study at M∞ = 3, showing the pressure error in the half of the domain closest to
the body obtained with the LF-2-2 scheme on uniform and locally refined grids.
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FIG. 22. Grid refinement study at M∞ = 3, showing the wall pressure error obtained with the LF-4-3 scheme
on uniform and locally refined grids.

error measured in the half of the domain closest to the body exhibits similar behavior, as is
evident in Fig. 21. Note that for the second-order scheme, the error convergence rate of the
local grid refinement method is less than the design order.

In contrast to the second-order method, the numerical solution error obtained with the
LF-4-3 scheme is dominated by the first-order error component. Figures 22 and 23 show that
the local grid refinement near the shock reduces the first-order error component generated by
the LF-4-3 shock-capturing procedure, so that the design-order error component becomes
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FIG. 23. Grid refinement study at M∞ = 3, showing the pressure error in the half of the domain closest to
the body obtained with the LF-4-3 scheme on uniform and locally refined grids.
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dominant on the adaptive grids. Although the error convergence rate is almost recovered to
the design order, the L2 norm of the wall pressure error obtained on locally refined grids
becomes comparable with the uniform grid results only on the finest mesh. For coarser
grids, the superiority of uniformly spaced grids is evident. The same conclusion can be
drawn for the pressure error measured in the field away from the shock, except that the
solution errors obtained on the locally refined and uniform grids become comparable on
the coarser 129 × 129 grid, as one can see in Fig. 23. The numerical results obtained
with both the second- and fourth-order schemes show that as the number of interfaces
between coarse and fine meshes increases, the deterioration in accuracy also increases,
which qualitatively corroborates the analysis presented in Section 5.2.

Error convergence plots of the pressure integral along the centerline calculated using the
LF-2-2 and LF-4-3 schemes on the same sequences of locally refined and uniform meshes
are depicted in Figs. 24 and 25, respectively. Note that the error convergence on uniform
grids is monotonic, whereas the error convergence on adaptive grids exhibits nonmonotonic
behavior. Figure 24 shows that the local grid refinement method based on the LF-2-2 scheme
does not reduce the pressure integral error compared with the uniform grid results. Certain
improvement in accuracy of the pressure integral computed with the LF-4-3 scheme can be
observed on fine locally refined grids, as shown in Fig. 25. However, this gain in accuracy
decreases as the background mesh is globally refined, and it practically vanishes on the finest
adaptive mesh. Although only the error in the pressure and its integral have been presented
in this study, similar convergence behavior is observed for the other flow quantities.

The results presented above have been obtained under the assumption that one family
of grid lines is parallel to the bow shock. However, in practical applications, generation of
shock-aligned grids is a complicated problem, because the exact shock location is unknown.
To gain greater insight into the error behavior when the grid is not aligned with the shock,
we perform a grid refinement study on uniform grids generated by the mapping Eq. (11)
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FIG. 24. Grid refinement study for the pressure integral error obtained with the LF-2-2 scheme on uniform
and locally refined grids.
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FIG. 25. Grid refinement study for the pressure integral error obtained with the LF-4-3 scheme on uniform
and locally refined grids.

with r0(θ) = const. In this case, circumferential grid lines are circular arcs which are not
aligned with the bow shock. Figure 26 shows a uniform 65 × 65 grid and isobars of the blunt
body flow calculated with the LF-2-2 scheme on this grid. Note that the maximum angle
between the bow shock and circumferential grid lines, which occurs at the point where the
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FIG. 26. Nonaligned uniform 65 × 65 grid and pressure contours obtained with the LF-2-2 scheme on this grid.
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FIG. 27. Grid refinement study at M∞ = 3, showing the wall pressure error obtained with the LF-2-2 scheme
on nonaligned uniform, shock-aligned uniform, and adaptive grids.

shock crosses the outflow boundary, is about 45◦. The L2 norm of the wall pressure error
and the pressure error norm measured in the half of the domain closest to the body surface
(obtained on the nonaligned uniform grids) are compared with the shock-aligned uniform
and most accurate adaptive grid results in Figs. 27 and 28, respectively.

log10(Ncells)

lo
g

1
0(

||P
h

al
f-P

h
al

fex
ac

t || L
2)

1.5 1.75 2 2.25 2.5 2.75

-4

-3

-2

-1

Aligned uniform grid, shocked problem
Aligned uniform grid, smooth problem
Aligned adaptive Cinf grid, dxun/dxmin=1.5
Aligned locally refined grid, 2-5 levels
Nonaligned uniform grid, shocked problem

2

1

FIG. 28. Grid refinement study at M∞ = 3, showing the pressure error in the half of the domain closest to
the body obtained with the LF-2-2 scheme on nonaligned uniform, shock-aligned uniform, and adaptive grids.
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As follows from the grid refinement study, when the grid is aligned with the bow shock,
the coefficient in front of the first-order error component is negligibly small, giving the ap-
pearance of a second-order convergence rate. However, this coefficient becomes much larger
on nonaligned grids that makes the first-order shock error component dominant on much
coarser grids. Despite the fact that the L2 norm of the pressure error obtained on the finest
nonaligned uniform mesh is one order of magnitude less accurate than that on the corre-
sponding shock-aligned uniform grid, the nonaligned uniform grid solution is still more
accurate than the best adaptive grid results. As one can see in Figs. 27 and 28, the error con-
vergence obtained with the LF-2-2 scheme is very similar to that calculated with the LF-4-3
scheme on shock-aligned grids. Figure 28 shows that the grid adaptation can improve the
numerical solution accuracy only asymptotically.

7. GRID ADAPTATION CRITERION FOR CAPTURED SHOCKS

Based on the results presented in Sections 6.1 and 6.2, we propose the following grid
adaptation strategy for captured shocks. The most general error convergence behavior shown
schematically in Fig. 29 is characterized by the presence of three different regions in the
error convergence plot. The first region corresponds to coarse meshes such that the shock
error component is of the order of O(1). In this region, the grid adaptation near the shock
is desirable because it reduces the most troublesome part of the error generated by the
shock-capturing procedure. It should be stressed that the grid adaptation not only reduces
the shock error, but also localizes the captured shock, which minimizes interaction of
Gibbs oscillations with the boundary conditions and other features of the flow. This is
one of the main reasons why high resolution shock-capturing schemes, such as ENO and
weighted ENO schemes, provide better accuracy on coarse grids compared to high-order
linear algorithms.

In the second region, which corresponds to sufficiently fine grids, the coefficient C1 in
Eq. (14) approaches its asymptotic value which, as has been shown for the LF-2-2 scheme,
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may be very small. For these grids, the design-order error component dominates the first-
order error component, i.e., ‖C ph p‖ > ‖C1h‖. As a result, any clustering of grid points or
local mesh refinement in the vicinity of the shock reduces only that part of the error which is
not dominant, ultimately reducing the numerical solution accuracy in smooth portions of the
solution. The main reason for such a behavior is the fact that both grid adaptation strategies
are not without penalties in the solution accuracy. As follows from the truncation error
analysis, for the grid redistribution method, the main source of error is due to the high-order
derivatives of the metric coefficients, which drastically increase on nonuniform meshes.
The numerical analysis performed for the local grid refinement technique has shown that,
in this case, the error accumulation occurs because of discontinuities in grid spacing and the
coupling between coarse and fine meshes, herein calculated as an approximate solution of the
Riemann problem. Because of these penalties in the solution accuracy, the grid adaptation
increases the total error in the numerical solution if it is used in the second region.

The third region corresponds to the first-order asymptotic limit. In this region, the grid
adaptation near the bow-shock would be the most efficient use of the computer resources.
However, as has been shown numerically, there is a transition zone where the error conver-
gence rate is O(h), but the grid adaptation does not provide improvement in the numerical
solution accuracy compared with the corresponding uniform grid results. This is because
both the grid redistribution and local grid refinement methods introduce additional error
in the numerical solution, caused by the grid nonuniformity. Note that the transition zone
becomes larger if the computational cost is used instead of the number of grid cells in the
error convergence plots.

From the above analysis it follows that the grid adaptation is desirable if the following
inequality holds

‖C1h‖ � ‖C ph p‖, (53)

where the norm is measured in regions where the solution is smooth. The above inequality
can be used as a grid adaptation criterion for captured discontinuities. It should be noted that
the constants C1 and C p depend on both the problem and the numerical scheme used. As
has been mentioned earlier, the coefficient C p can be treated as the leading truncation error
term. To our knowledge, there are no theoretical results for evaluation of the coefficient
C1. Therefore, to use the criterion (53) in practical applications, global grid refinement
or coarsening is required. The global coarsening can be used if the grid is fine enough to
correspond to the second and third regions in the error convergence diagram. However, if
the grid is very coarse that corresponds to the first region, the coarsening cannot be used,
and the grid refinement is the only way to evaluate the error convergence rate. This approach
becomes quite expensive in three dimensions. From this point of view, it is very important
to be able to predict a priori the error introduced by the shock-capturing procedure. This
quantification together with the criterion (53) will provide guidance for grid adaptation for
captured discontinuities.

It is instructive to speculate on the generality of this work, particularly on two practical
questions: (1) are the conclusions and suggestions (see Fig. 29) valid for any general dis-
continuous flow, and (2) are the present results (second- and fourth-order Lax–Friedrichs
schemes) general for any high-order numerical algorithm? Although a precise answer does
not presently exist to either question, we make the following conjecture: Similar qualita-
tive results and an equivalent grid adaptation criterion (53) will be obtained for any flows
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containing multidimensional shocks, independent of the high-order numerical method (cen-
tral difference with scalar dissipation, Roe, TVD, and ENO). This assertion is based on the
observation that for any captured discontinuities, the numerical solution error obtained
with any high-order shock-capturing method consists of two parts: the first-order shock
error C1h and the design-order error component C ph p. Although the coefficients C1 and
C p are problem and scheme dependent, asymptotically, these coefficients do not depend
on the grid spacing h. Consequently, for any high-order method, such that p > 1, and any
finite values C1 and C p, the solution error is asymptotically dominated by the first-order
error component, corresponding to the third region in Fig. 29. If C1 � C p, the solution error
exhibits high-order convergence on sufficiently coarse grids and corresponds to the second
region in the error convergence diagram. If the grid is very coarse, such that C1h ∼ O(1),
the solution error corresponds to the first region in Fig. 29. Note, however, that the first
and second regions may be very small or even nonexistent if C1 � C p, whereas the third
region always exists, regardless of the discontinuity strength and the high-order numerical
algorithm used.

Although the results presented above have been obtained for steady-state flows, the same
conclusions can be drawn for time-dependent problems as well. An essential effect of the
grid nonuniformity on the numerical solution accuracy remains one of the most important
sources of error for unsteady problems with shocks. Since time-dependent flows involve
both the temporal and spatial errors, additional errors caused by mesh movement and dy-
namical refinement/coarsening are introduced into the numerical solution. The main source
of error for moving-grid methods is the inability to satisfy the geometric conservation law
in the presence of moving discontinuities. One of the main problems associated with time-
dependent local grid refinement methods is the need to interpolate. Note that any high-order
interpolation across a strong discontinuity can cause a perceptible loss of spatial accuracy
and can produce strong oscillations because of the Gibbs phenomenon. Another very im-
portant issue, particularly for unsteady problems, is a mutual influence of the temporal and
spatial error components.

8. CONCLUSIONS

The accuracy of the adaptive grid redistribution and local grid refinement methods is
examined and analyzed for captured shocks. The grid refinement study using second- and
fourth-order finite difference schemes based on the Lax–Friedrichs flux vector splitting is
performed to solve the supersonic inviscid flow around a circular cylinder. The numerical
calculations show that if the solution error is dominated by the first-order error component,
the grid adaptation near the shock increases the error convergence rate toward the design
order of the numerical algorithm used. At the same time, it has been shown theoretically
and corroborated numerically that the design-order error component drastically increases
because of the grid nonuniformity. As a result, either clustering of grid points or local grid
refinement near the shock improves the numerical solution accuracy only asymptotically
on very fine meshes that are not reasonable for modern computers. Furthermore, it has
been found that neither grid adaptation strategy practically reduces error in the pressure
integral across the shock compared with that obtained on the corresponding uniform grid.
From the present analysis it follows that grid adaptation is desirable if the first-order error
component measured in the smooth part of the solution is much larger than the design-order
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error component. This inequality can be used as a grid adaptation criterion for captured
discontinuities.
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